
CHEMICAL MODIFICATION OF STREPTOVARICIN C. II THE INTRAMOLECULAR ALDOL CONDENSATION OF 19-O-ACETONYL-DAMAVARICIN C AND ITS ANALOGS

Sir:

In the previous paper¹⁾ we reported a series of 19-O-substituted derivatives of damavaricin C, a degradative derivative of streptovaricin C, along with their biological properties. We wish to describe here the intramolecular aldol condensation of 19-O-acetonyldamavaricin C¹⁾ and its analogs which gives products with a new carbon skeleton structure still possessing biological activity against gram-positive bacteria including *Mycobacterium tuberculosis in vitro*.

Upon treatment with benzylamine in benzene at room temperature, 19-O-acetonyldamavaricin C (1) was converted into the isomer (2) $[C_{40}H_{51}NO_{14} \cdot H_2O;*$ amorphous orange powder, m.p. 162~163°C; λ_{max}^{MeOH} 270(29,600), 333(9,470) and 422(4,700) nm] by an intramolecular aldol condensation without dehydration (Scheme 1).

The n.m.r. spectra of 1 and the aldol compound 2 showed that the typical AB pattern

* Microanalysis agree with the molecular formula assigned.

of the acetonyl CH₂ protons at $\delta 4.37$ (d, J=16.4 Hz) and $\delta 4.84$ (d, J=16.4 Hz) in 1 was replaced in 2 by two sharp singlets observed at $\delta 4.84$ and $\delta 5.65$. The latter disappeared by adding D₂O, indicating that compound 2 is an aldol form of 1. Furthermore, the vinyl proton at C-15, observed as a broad singlet at $\delta 6.07$ in 1, was shifted to higher field at $\delta 4.96$ in 2, indicating that the carbonyl group at C-17 in 1 was absent in 2 due to the intramolecular aldol condensation.

In the mass spectrum of 2, the molecular ion peak was not detected but dehydration peaks at m/e 751 (M-H₂O), 733 (M-2H₂O), 715 (M-3H₂O) and 697 (M-4H₂O) suggested

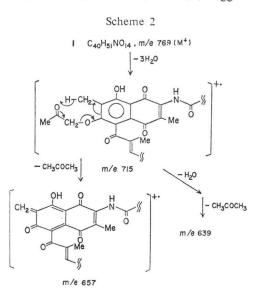
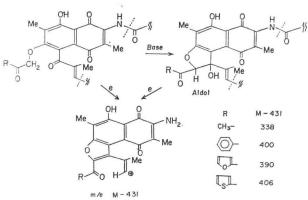



Table 1. Antibacterial activity (µg/ml) of various aldol compounds *in vitro*.

No). R*	St. aureus FDA209P	M. tuberculosis H ₃₇ Rv	E. coli
2	сн ₃ -	0.2	50	>100
3	CH3CH2-	10	10	>100
4	\bigcirc	2	50	>100
5	c1-{	10	10	>100
6	Me0-0-	5	10	>100
7	L.	2	20	>100
8	L	5	10	>100

* R refers to the structure shown in Scheme 3.

the facile loss of a tertiary hydroxyl group at the C-17 position in 2. Furthermore, intense peaks due to deacetonation observed at m/e657 and 639 in 1 were undetectable in the aldol compound 2. The deacetonation may result from a vinylogous McLAFFERTY rearrangement, as shown in Scheme 2.

Other than the aldol compound 2, a series of analogous aldol compounds was prepared by the same reaction procedure.

Table 1 shows that various aldol compounds have an inhibitory activity against *Staphylococ*cus aureus FDA209P and *Mycobacterium tuber*culosis H37Rv in vitro, but are inactive below 100 μ g/ml against *Escherichia coli in vitro*.

Preliminary investigations of other biological activities such as antitumor activity *in vitro* and the inhibition of RSV RNA-directed DNA polymerase (reverse transcriptase) are now in progress and will be published elsewhere.²⁾

Kazuya Sasaki Takanobu Naito Toshiyuki Satomi Yoshio Momoki

Research Laboratory Kaken Chemical Co., Ltd. 2-28-8 Honkomagome Bunkyo-ku, Tokyo 113, Japan (Received April 28, 1975)

1 /

References

- SASAKI, K.; T. NAITO, T. SATOMI & K. ONO-DERA: Chemical modification of streptovaricin C. I. 19-O-Substituted damavaricin C. J. Antibiotics 29: 147~154, 1976
- 2) ONODERA, K. & K. SASAKI: manuscript in preparation